Jumat, 04 Juli 2014

PROPOSISI

 Proposisi
Konsep dan Notasi Dasar
Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya.
Contoh 1
Semua pernyataan di bawah ini adalah proposisi:
a) 13 adalah bilangan ganjil.
b) 1 + 1 = 2.
c) 8  akar kuadrat dari 8 + 8.
d) Ada monyet di bulan.
e) Hari ini adalah hari Rabu.
f) Untuk sembarang bilangan bulat n  0, maka 2n adalah bilangan genap.
g) x + y = y + x untuk setiap x dan y bilangan riil.

Contoh 2
Semua pernyataan di bawah ini bukan proposisi
(a) Jam berapa kereta api Argo Bromo tiba di Gambir?
(b) Isilah gelas tersebut dengan air!
(c) x + 3 = 8
(d) x > 3
Proposisi dilambangkan dengan huruf kecil p, q, r, ….
p : 13 adalah bilangan ganjil.
q : Untuk sembarang bilangan bulat n  0, maka 2n adalah bilangan genap.
r : 2 + 2 = 4 2
Misalkan p dan q adalah proposisi.
1. Konjungsi (conjunction): p dan q
·        Notasi p ^q,
2. Disjungsi (disjunction): p atau q
Notasi: p ˅ q
3. Ingkaran (negation) dari p: tidak p
Notasi: ~p

Contoh 3
Diketahui proposisi-proposisi berikut:
p : Hari ini hujan
q : Murid-murid diliburkan dari sekolah
p ^ q : Hari ini hujan dan murid-murid diliburkan dari sekolah
p˅q : Hari ini hujan atau murid-murid diliburkan dari sekolah
~p : Tidak benar hari ini hujan
(atau: Hari ini tidak hujan) 3  
Contoh 4
Diketahui proposisi-proposisi berikut:
p : Pemuda itu tinggi
q : Pemuda itu tampan
Nyatakan dalam bentuk simbolik:
(a) Pemuda itu tinggi dan tampan
(b) Pemuda itu tinggi tapi tidak tampan
(c) Pemuda itu tidak tinggi maupun tampan
(d) Tidak benar bahwa pemuda itu pendek atau tidak tampan
(e) Pemuda itu tinggi, atau pendek dan tampan
(f) Tidak benar bahwa pemuda itu pendek maupun tampan

Penyelesaian:
(a) p ^ q
(b) p^ ~q
(c) ~p^~q
(d) ~(~p^ ~q)
(e) p˅(p~ ^q)
(f) ~(~p ^ ~q)

Misalkan p dan q adalah proposisi.
1. Kondisional atau implikasi : p → q
2. Konvers (kebalikan) : q p
3. Invers : ~ p →~ q
4. Kontraposisi : ~ q → ~ p

Bikondisional (Bi-implikasi)
- Bentuk proposisi: “p jika dan hanya jika q
-Notasi: p q

Tabel kebenaran

Tautologi dan Kontradiksi
- Proposisi majemuk disebut tautologi jika ia benar untuk semua kasus
- Proposisi majemuk disebut kontradiksi jika ia salah untuk semua kasus.

Contoh 7. p ˅ ~(p ^ q) adalah sebuah tautology

Contoh 8. (p ^ q) ^ ~(p ˅ q) adalah sebuah kontradiksi



Ekivalensi Logika
-Dua buah proposisi majemuk, P(p, q, ..) dan Q(p, q, ..) disebut ekivalen secara logika jika keduanya mempunyai tabel kebenaran yang identik.

Notasi: P(p, q, …)  Q(p, q, …)
Contoh 9. Hukum De Morgan: ~(p ^ q) ~p ˅~q.

Aljabar Proposisi

Contoh 10
Tunjukkan bahwa p ˅ ~(p ˅ q) dan p ˅ ~q keduanya ekivalen secara logika.
Penyelesaian:
p ˅ ~(p ˅ q ) p ˅ (~p ^ ~q) (Hukum De morgan)
       (p ˅ ~p) ^ (p ˅ ~q) (Hukum distributif)
                T ^ (p ˅ ~q) (Hukum negasi)
                         p ˅ ~q (Hukum identitas)
Contoh 11
Buktikan hukum penyerapan: p ^(p ˅ q) p
Penyelesaian:
p ^ (p ˅ q) (p ˅F) ^ (p ˅ q) (Hukum Identitas)
                     p ˅ (F ^ q) (Hukum distributif)
            p ˅ F (Hukum Null)

   p (Hukum Identitas)
SOAL:
1.Buktikan bahwa proposisi berikut “TAUTOLOGI” !!
{(pvq)⇒r } ⇔{ (p⇒r)∧(q⇒r) }
{p⇒(q∧r) }⇔{(p⇒q)∧(p⇒r) }
{(p∧q)⇒r}⇔{(p∧ ∼r)⇒∼q)
{(p∧q)⇒r}⇔{(p⇒r) v (q⇒r)}
(p⇒r)⇒{(p∧q)⇒r}∧{p⇒(q∧r) }⇒(p⇒q)
2.Tentukan Konvers, Invers, dan Kontraposisi dari Proposisi berikut,Kemudian tentukan kebenarannya!
Jika x=5 , Maka x^2=25
Jika x^2 bilangan asli, Maka x bilangan asli
Jika ∆ABC sama kaki, Maka ∠A= ∠C
Jawaban
1.Pembuktian “TAUTOLOGI”
{(pvq)⇒r } ⇔{ (p⇒r)∧(q⇒r) }
Jawab :
p q r { ( p v q ) ⇒ r } ⇔ { ( p ⇒r ) ∧ (q ⇒ r ) }
B B B B B B B B B
B B S B S B S S S
B S B B B B B B B
B S S B S B S S B
S B B B B B B B B
S B S B S B B S S
S S B S B B B B B
S S S S B B B B B
Terbukti bahwa proposisi tsb adalah TAUTOLOGI
{p⇒(q∧r) }⇔{(p⇒q)∧(p⇒r) }
Jawab :
p q r { p ⇒ (q ∧ r) } ⇔ { (p ⇒ q) ∧ ( p ⇒r ) }
B B B B B B B B B
B B S S S B B S S
B S B S S B S S B
B S S S S B S S S
S B B B B B B B B
S B S B S B B B B
S S B B S B B B B
S S S B S B B B B
Terbukti bahwa proposisi tsb adalah TAUTOLOGI
{(p∧q)⇒r}⇔{(p∧ ∼r)⇒∼q)}
Jawab :
p q r ∼q ∼r { (p ∧ q ) ⇒ r } ⇔ { (p ∧ ∼r) ⇒∼q )}
B B B S S B B B S B
B B S S B B S B B S
B S B B S S B B S B
B S S B B S B B B B
S B B S S S B B S B
S B S S B S B B S B
S S B B S S B B S B
S S S B B S B B S B
Terbukti bahwa proposisi tsb adalah TAUTOLOGI
{(p∧q)⇒r}⇔{(p⇒r) v (q⇒r) }
Jawab :
p q r {(p ∧ q ) ⇒r } ⇔ {(p ⇒ r) v (q ⇒ r )}
B B B B B B B B B
B B S B S B S S S
B S B S B B B B B
B S S S B B S B B
S B B S B B B B B
S B S S B B B B S
S S B S B B B B B
S S S S B B B B B
Terbukti bahwa proposisi tsb adalah TAUTOLOGI
(p⇒r)⇒{(p∧q)⇒r}∧{p⇒(q∧r) }⇒(p⇒q)
Jawab :
p q r (p⇒r) ⇒ { (p∧q) ⇒ r } ∧ { p ⇒ (q∧r)} ⇒ (p ⇒ q)
B B B B B B B B B B B B
B B S S B B S B S S B B
B S B B B S B B B S B S
B S S S B S B B B S B S
S B B B B S B B B B B B
S B S B B S B B B S B B
S S B B B S B B B S B B
S S S B B S B B B S B B
Terbukti bahwa proposisi tsb adalah TAUTOLOGI
Jawaban
2.Konvers, Invers, Kontraposisi dan Tabel Kebenaran
Jika x=5 , Maka x^2=25
Jawab :
p : x =5
q : x^2=25
konvers (q ⇒p)
Jika x^2=25 , maka x=5
Invers (∼p⇒∼q)
Jika x≠5 , maka x^2≠25
Kontraposisi (∼q⇒∼p)
Jika x^2≠25 , maka x≠5
Negasi (p∧∼q)
x=5 , akan tetapi x^2≠25
Tabel Kebenaran
p q ∼p ∼q Implikasi
( p⇒q) Konvers
(q ⇒p) Invers
(∼p⇒∼q) Kontraposisi
(∼q⇒∼p) Negasi
(p∧∼q)
B B S S B B B B S
B S S B S B B S B
S B B S B S S B S
S S B B B B B B s
Jika x^2 bilangan asli, Maka x bilangan asli
Jawab :
p : x^2 bilangan asli
q : x bilangan asli
konvers (q ⇒p)
Jika x bilangan asli, maka x^2 bilangan asli
Invers (∼p⇒∼q)
Jika x^2 bukan bilangan asli , maka x bukan bilangan asli
Kontraposisi (∼q⇒∼p)
Jika x bukan bilangan asli, maka x^2 bukan bilangan asli
Negasi (p∧∼q)
x^2 bilangan asli, akan tetapi x bukan bilangan asli
Tabel Kebenaran
p q ∼p ∼q Implikasi
( p⇒q) Konvers
(q ⇒p) Invers
(∼p⇒∼q) Kontraposisi
(∼q⇒∼p) Negasi
(p∧∼q)
B B S S B B B B S
B S S B S B B S B
S B B S B S S B S
S S B B B B B B s
Jika ∆ ABC sama kaki, Maka ∠A= ∠C
Jawab :
p : ∆ ABC sama kaki
q : ∠A= ∠C
konvers (q ⇒p)
Jika ∠A= ∠C, maka ∆ ABC sama kaki
Invers (∼p⇒∼q)
Jika ∆ ABC bukan sama kaki , maka ∠A ≠∠C
Kontraposisi (∼q⇒∼p)
Jika ∠A ≠∠C, maka ∆ ABC bukan sama kaki
Negasi (p∧∼q)
∆ ABC sama kaki, akan tetapi ∠A ≠∠C
Tabel Kebenaran
p q ∼p ∼q Implikasi
( p⇒q) Konvers
(q ⇒p) Invers
(∼p⇒∼q) Kontraposisi
(∼q⇒∼p) Negasi
(p∧∼q)
B B S S B B B B S
B S S B S B B S B
S B B S B S S B S
S S B B B B B B s
http://achemadfaroeqs.wordpress.com/2013/06/25/logika-matematika-proposisi/ 
http://njuwetpinggirkali.wordpress.com/2011/03/29/contoh-soal-logika-matematika/

Tidak ada komentar:

Posting Komentar